US Geological Survey
Date of this Version
2006
Abstract
Ecologists increasingly recognize that birds can respond to features well beyond their normal areas of activity, but little is known about the relative importance of landscapes and proximate factors or about the scales of landscapes that influence bird distributions. We examined the influences of tree cover at both proximate and landscape scales on grassland birds, a group of birds of high conservation concern, in the Sheyenne National Grassland in North Dakota, USA. The Grassland contains a diverse array of grassland and woodland habitats. We surveyed breeding birds on 2015 100 m long transect segments during 2002 and 2003. We modeled the occurrence of 19 species in relation to habitat features (percentages of grassland, woodland, shrubland, and wetland) within each 100-m segment and to tree cover within 200-1600 m of the segment. We used information-theoretic statistical methods to compare models and variables. At the proximate scales, tree cover was the most important variable, having negative influences on 13 species and positive influences on two species. In a comparison of multiple scales, models with only proximate variables were adequate for some species, but models combining proximate with landscape information were best for 17 of 19 species. Landscape-only models were rarely competitive. Combined models at the largest scales (800-1600 m) were best for 12 of 19 species. Seven species had best models including 1600-m landscapes plus proximate factors in at least one year. These were Wilson's Phalarope (Phalaropus tricolor), Sedge Wren (Cistothorus platensis), Field Sparrow (Spizella pusilla), Grasshopper Sparrow (Ammodramus savannarum), Bobolink (Dolychonix oryzivorus), Red- winged Blackbird (Agelaius phoeniceus), and Brown-headed Cowbird (Molothrus ater). These seven are small-bodied species; thus larger-bodied species do not necessarily respond most to the largest landscapes. Our findings suggest that birds respond to habitat features at a variety of scales. Models with only landscape-scale tree cover were rarely competitive, indicating that broad-scale modeling alone, such as that based solely on remotely sensed data, is likely to be inadequate in explaining species distributions.
Comments
Published in Ecological Applications, 16(3), 2006, pp. 1062-1075.