US Geological Survey
ORCID IDs
http://orcid.org/0000-0003-0747-1449
http://orcid.org/0000-0002-7523-6232
Date of this Version
1-9-2019
Citation
Baasch DM, Farrell PD, Howlin S, Pearse AT, Farnsworth JM, Smith CB (2019) Whooping crane use of riverine stopover sites. PLoS ONE 14 (1): e0209612. https://doi.org/10.1371/journal. pone.0209612
Abstract
Migratory birds like endangered whooping cranes (Grus americana) require suitable nocturnal roost sites during twice annual migrations. Whooping cranes primarily roost in shallow surface water wetlands, ponds, and rivers. All these features have been greatly impacted by human activities, which present threats to the continued recovery of the species. A portion of one such river, the central Platte River, has been identified as critical habitat for the survival of the endangered whooping crane. Management intervention is now underway to rehabilitate habitat form and function on the central Platte River to increase use and thereby contribute to the survival of whooping cranes. The goal of our analyses was to develop habitat selection models that could be used to direct riverine habitat management activities (i.e., channel widening, tree removal, flow augmentation, etc.) along the central Platte River and throughout the species’ range. As such, we focused our analyses on two robust sets of whooping crane observations and habitat metrics the Platte River Recovery Implementation Program (Program or PRRIP) and other such organizations could influence. This included channel characteristics such as total channel width, the width of channel unobstructed by dense vegetation, and distance of forest from the edge of the channel and flow-related metrics like wetted width and unit discharge (flow volume per linear meter of wetted channel width) that could be influenced by flow augmentation or reductions during migration. We used 17 years of systematic monitoring data in a discrete-choice framework to evaluate the influence these various metrics have on the relative probability of whooping crane use and found the width of channel unobstructed by dense vegetation and distance to the nearest forest were the best predictors of whooping crane use. Secondly, we used telemetry data obtained from a sample of 38 birds of all ages over the course of seven years, 2010–2016, to evaluate whooping crane use of riverine habitat within the North-central Great Plains, USA. For this second analysis, we focused on the two metrics found to be important predictors of whooping crane use along the central Platte River, unobstructed channel width and distance to nearest forest or wooded area. Our findings indicate resource managers, such as the Program, have the potential to influence whooping crane use of the central Platte River through removal of in-channel vegetation to increase the unobstructed width of narrow channels and through removal of trees along the bank line to increase unforested corridor widths. Results of both analyses also indicated that increases in relative probability of use by whooping cranes did not appreciably increase with unobstructed views 200 m wide and unforested corridor widths that were 330 m. Therefore, managing riverine sites for channels widths >200 m and removing trees beyond 165 m from the channel’s edge would increase costs associated with implementing management actions such as channel and bank-line disking, removing trees, augmenting flow, etc. without necessarily realizing an additional appreciable increase in use by migrating whooping cranes.
Included in
Animal Sciences Commons, Behavior and Ethology Commons, Biodiversity Commons, Environmental Policy Commons, Recreation, Parks and Tourism Administration Commons, Terrestrial and Aquatic Ecology Commons
Comments
U.S. government work.