US Geological Survey
Document Type
Article
Date of this Version
12-2018
Citation
Romanach SS, Stith B, Johnson FA. 2018. Designing a protected area to safeguard imperiled species from urbanization. Journal of Fish and Wildlife Management 9(2):xx–xx; e1944-687X. doi:10.3996/072017-JFWM-060
Abstract
Reserve design is a process that can address ecological, social, and political factors to identify parcels of land needed to sustain wildlife populations and other natural resources. Acquisition of parcels for a large terrestrial reserve is difficult because it typically occurs over a long timeframe and thus invokes consideration of future conditions such as climate and urbanization changes. In central Florida, the U.S. government has authorized a new protected area, the Everglades Headwaters National Wildlife Refuge. The new refuge will host important threatened and endangered species and habitats, and will be located to allow for species adaptation from climate change impacts. For this study we combined habitat objectives defined by the U.S. Fish and Wildlife Service and projections from two urbanization models to provide guidance for Everglades Headwaters National Wildlife Refuge design. We used Marxan with Zones to find nearoptimal solutions for protecting explicit amounts of five target habitats. We identified parcels for inclusion into the reserve design that the models allocated among two zones representing different methods of protection: fee-simple purchase (up to 20,234 ha authorized by the U.S. government), and conservation easement agreements (up to 40,469ha authorized). As expected, for all scenarios we found an increase in costs as the proportion of fee-simple purchases was increased, reflecting the lesser cost of easements, but the number of parcels required for protection differed little among scenarios. The two urbanization models showed considerable agreement over which habitat patches they did not forecast to be developed, and some agreement over which parcels might be developed. The U.S. Fish and Wildlife Service may benefit from focusing on parcels that our analyses select frequently under both urban scenarios because these parcels are more likely to be in areas where there are fewer urbanization threats and a lower demand for land. The reserve designs we generated met U.S. Fish and Wildlife Service habitat goals within fee and easement zone restrictions, and we found reserve configurations that fell well below the mandated size limit.
Included in
Geology Commons, Oceanography and Atmospheric Sciences and Meteorology Commons, Other Earth Sciences Commons, Other Environmental Sciences Commons
Comments
U.S. Government Work.