US Geological Survey

 

Document Type

Article

Date of this Version

2-21-2019

Citation

U.S. Government Work

Comments

https://doi.org/10.1016/j.geomorph.2019.02.023 0169-555X/Published by Elsevier B.V.

Abstract

The Nebraska SandHills region is the largest dune field inNorthAmerica and has diverse aeolian landforms. It has been active during both the late Pleistocene and late Holocene. Despite decades of study, the source of sediment for this large sand sea is still controversial. Here we report new trace element compositions of aeolian sand that are compared to four hypothesized sediment sources, Tertiary rocks of the Arikaree Group and Ogallala Group, unconsolidated sands of Pliocene age, and Platte River systemsands. All four potential sources have amineralogy that is similar to the Nebraska Sand Hills. K/Rb, K/Ba, Sc-Th-La, Eu/Eu*, LaN/YbN, As/Sb, and Fe/Sc values show, however, that Pliocene sediments and sands from the Platte River system are not likely sources. The Arikaree Group could be a minor contributor, but sands from the Ogallala Group appear to have the best compositional fit to the Nebraska Sand Hills. Although past studies have proposed the Ogallala Group as an important sand source, the hypothesis has been questioned, because the unit iswell cemented by calcrete in its upper part. However, examination of the landscape upwind of the Nebraska Sand Hills shows that the Ogallala Group, where it occurs at the land surface, is highly dissected in much of this region, which makes sand-sized particles available for aeolian entrainment whenever drought conditions diminish a protective vegetation cover.

Share

COinS