US Geological Survey
Document Type
Article
Date of this Version
2004
Abstract
Studies of dunefields in central and western North America show that mineralogical maturity can provide new insights into the origin and evolution of aeolian sand bodies. Many of the world’s great sand seas in Africa, Asia and Australia are quartz-dominated and thus can be considered to be mineralogically mature. The Algodones (California) and Parker (Arizona) dunes in the southwestern United States are also mature, but have inherited a high degree of mineralogical maturity from quartz-rich sedimentary rocks drained by the Colorado River. In Libya, sediments of the Zallaf sand sea, which are almost pure quartz, may have originated in a similar fashion. The Fort Morgan (Colorado) and Casper (Wyoming) dunefields in the central Great Plains of North America, and the Namib sand sea of southern Africa have an intermediate degree of mineralogical maturity because their sources are large rivers that drained both unweathered plutonic and metamorphic rocks and mature sedimentary rocks. Mojave Desert dunefields in the southwestern United States are quite immature because they are in basins adjacent to plutonic rocks that were their sources. Other dunefields in the Great Plains of North America (those in Nebraska and Texas) are more mature than any possible source sediments and therefore reflect mineralogical evolution over time. Such changes in composition can occur because of either of two opposing long-term states of the dunefield. In one state, dunes are stable for long periods of time and chemical weathering depletes feldspars and other weatherable minerals in the sediment body. In the other state, which is most likely for the Great Plains, abrasion and ballistic impacts deplete the carbonate minerals and feldspars because the dunes are active for longer periods than they are stable.
Comments
Published in Geomorphology 59 (2004) 247–269.