Veterinary and Biomedical Sciences, Department of
Document Type
Article
Date of this Version
2015
Citation
Daniel GR, Sollars PJ, Pickard GE, Smith GA. 2015. Pseudorabies virus fast axonal transport occurs by a pUS9-independent mechanism. J Virol 89:8088–8091. doi:10.1128/JVI.00771-15.
Abstract
Reactivation from latency results in transmission of neurotropic herpesviruses from the nervous system to body surfaces, referred to as anterograde axonal trafficking. The virus-encoded protein pUS9 promotes axonal dissemination by sorting virus particles into axons, but whether it is also an effector of fast axonal transport within axons is unknown. To determine the role of pUS9 in anterograde trafficking, we analyzed the axonal transport of pseudorabies virus in the presence and absence of pUS9.
Included in
Biochemistry, Biophysics, and Structural Biology Commons, Cell and Developmental Biology Commons, Immunology and Infectious Disease Commons, Medical Sciences Commons, Veterinary Microbiology and Immunobiology Commons, Veterinary Pathology and Pathobiology Commons
Comments
Copyright © 2015, American Society for Microbiology. All Rights Reserved. Used by permission.