Veterinary and Biomedical Sciences, Department of
ORCID IDs
0000-0003-0506-513X
0000-0002-0991-8737
Document Type
Article
Date of this Version
2018
Citation
PLoS ONE 13(12): e0207161
Abstract
The success of Staphylococcus aureus as a pathogen is due in part to its ability to adapt to changing environmental conditions using signal transduction pathways, such as metaboliteresponsive regulators and two-component systems. S. aureus has a two-component system encoded by the gene pair sav0224 (hptS) and sav0223 (hptR) that regulate the hexose phosphate transport (uhpT) system in response to extracellular glucose-6-phosphate. Glycolytic intermediates such as glucose-6-phosphate are important carbon sources that also modulate the activity of the global metabolite-responsive transcriptional regulator CcpA. Because uhpT has a putative CcpA binding site in its promoter and it is regulated by HptR, it was hypothesized the regulons of CcpA and HptR might intersect. To determine if the regulatory domains of CcpA and HptRS overlap, ccpA was deleted in strains SA564 and SA564- ΔhptRS and growth, metabolic, proteomic, and transcriptional differences were assessed. As expected, CcpA represses hptS and hptR in a glucose dependent manner; however, upon CcpA derepression, the HptRS system functions as a transcriptional activator of metabolic genes within the CcpA regulon. Importantly, inactivation of ccpA and hptRS altered sensitivity to fosfomycin and ampicillin in the absence of exogenous glucose-6-phosphate, indicating that both CcpA and HptRS modulate antibiotic susceptibility.
Included in
Biochemistry, Biophysics, and Structural Biology Commons, Cell and Developmental Biology Commons, Immunology and Infectious Disease Commons, Medical Sciences Commons, Veterinary Microbiology and Immunobiology Commons, Veterinary Pathology and Pathobiology Commons
Comments
© 2018 Reed et al.
Open access
https://doi.org/10.1371/journal.pone.0207161