Veterinary and Biomedical Sciences, Department of
Document Type
Article
Date of this Version
2023
Citation
Plast Reconstr Surg Glob Open. 2023 May; 11(5 Suppl): 99-100. Published online 2023 May 19.
doi: 10.1097/01.GOX.0000938220.03798.59
PMCID: PMC10194628
Abstract
Volumetric muscle loss (VML) is a composite loss of skeletal muscle tissue (greater than 20%) that heals with minimal muscle regeneration, substantial fibrosis, and subsequent functional deficits. Standard treatment, involving free functional muscle transfer and physical therapy, cannot restore full muscle function following VML. Tissue engineered scaffolds, 3D structural templates that mimic native extracellular matrix, are promising to enhance functional muscle formation and recovery. Bioprinted 3D scaffolds are engineered using bioinks, created from scaffolding material, cells, and growth factors, to replicate skeletal muscle architecture with precise control over their spatial deposition. METHODS: The present study evaluates a 3D-printed foam-like scaffold for the treatment of VML in a murine model. This colloidal foam-like scaffold was developed to have high porosity to improve tissue ingrowth, in contrast to dense polymeric scaffolds that routinely resulted in very poor tissue ingrowth, and sufficient stiffness to maintain its shape.
Included in
Biochemistry, Biophysics, and Structural Biology Commons, Cell and Developmental Biology Commons, Immunology and Infectious Disease Commons, Medical Sciences Commons, Veterinary Microbiology and Immunobiology Commons, Veterinary Pathology and Pathobiology Commons