Statistics, Department of
The R Journal
Date of this Version
6-2021
Document Type
Article
Citation
The R Journal (June 2021) 13(1); Editor: Dianne Cook
Abstract
Canonical correlation analysis (CCA) has a long history as an explanatory statistical method in high-dimensional data analysis and has been successfully applied in many scientific fields such as chemometrics, pattern recognition, genomic sequence analysis, and so on. The so-called seedCCA is a newly developed R package that implements not only the standard and seeded CCA but also partial least squares. The package enables us to fit CCA to large-p and small-n data. The paper provides a complete guide. Also, the seeded CCA application results are compared with the regularized CCA in the existing R package. It is believed that the package, along with the paper, will contribute to high-dimensional data analysis in various science field practitioners and that the statistical methodologies in multivariate analysis become more fruitful
Included in
Numerical Analysis and Scientific Computing Commons, Programming Languages and Compilers Commons
Comments
Copyright 2021, The R Foundation. Open access material. License: CC BY 4.0 International